Abstract

Rare earth nickel oxide perovskites (R NiO 3, R=rare earth) have, except for LaNiO 3, a metal–insulator (MI) phase transition as temperature decreases. The transition temperature (T MI ) increases as the R-ion becomes smaller. They present also, at low temperatures, a complex antiferromagnetic order. For lighter R-ions (e.g. Pr and Nd), the antiferromagnetic transition temperature (T N ) is close to T MI , while for heavier R-ions (e.g. Eu, Sm), T MI and T N are very far apart, suggesting that the magnetic and electronic behaviors are not directly coupled. Although R NiO 3 perovskites are placed in the boundary of the Mott–Hubbard and charge transfer regimes, there are several evidences pointing to a charge transfer gap, mainly controlled by ligand-to-metal charge transfer energy, and thus strongly dependent on hybridization. Ni L-edge absorption spectroscopy (transition 2p → 3d) gives direct information on the density of Ni 3d empty states, and in particular on the multiplet splitting and hybridization between Ni 3d and O 2p bands. Here we present Ni L3 and L2 absorption spectra measured for NdNiO 3 and EuNiO 3 (T MI = 200 and 480 K). At room temperature, dramatic differences are observed between EuNiO 3 (insulating) and NdNiO 3 (metallic). The normalized spectra give evidence for a higher density of 3d unoccupied states and a larger multiplet splitting in EuNiO 3. Both effects might be correlated to a decrease in hybridization. The same behavior is observed for NdNiO 3 as it is cooled down to the insulating phase (T < 200 K), revealing that in these compounds the opening of the gap is directly related to the degree of hybridization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call