Abstract

We study the effect of two non-interacting impurity atoms near by a one-dimensional nanowire, which is modeled as a tight-binding hopping model. The virtual single-electron hopping between two impurities will induce an additional energy depending on the distance of two impurities, which gives a electronic Casimir—Polder effect. We find that the Casimir—Polder force between the two impurities decreases with the impurity-impurity distance exponentially. And the effects of nanowire and finite temperature on the Casimir—Polder force are also discussed in detail, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.