Abstract

We consider a parity-preserving QED 3 model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron–electron interaction potential underlying high-T c superconductivity. The fact that the resulting potential, -CsK0(Mr), is non-confining and "weak" (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameter, is then applied to the Schrödinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasiplanar cuprate superconductors. The data analyzed here suggest an energy scale of 1–10 meV for the breaking of the U(1)-symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.