Abstract

Electron momentum spectroscopy (EMS) has been used to measure the valence band electronic structure of thin magnesium and magnesium oxide films. The band structures have also been calculated within the linear muffin-tin orbital (LMTO) approximation. The free-electron-like parabola characteristic of metallic solids was observed for magnesium with a bandwidth of approximately 6 eV, in agreement with previous measurements. The inclusion of energy broadening due to finite hole-lifetime effects and a Monte Carlo simulation of multiple scattering events gives good agreement between calculated and measured band structures. However, we measure a much higher intensity due to plasmon excitation compared with the simulated intensity. Upon oxidation the valence structure splits into two distinct, less dispersive bands typical of an ionic solid. Intensity due to plasmon excitation was almost completely absent in the experimental spectra for magnesium oxide. The LMTO calculation reproduces the overall structure and dispersion range of the oxide. The measured and calculated energy gap between upper and lower valence bands and their relative intensities do not agree quantitatively. This discrepancy may be due to a contribution of magnesium s states to the predominantly oxygen p states in the upper band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.