Abstract

Ce,Mg:LuYAG transparent ceramics were successfully fabricated by the solid state reaction method. The results of x-ray diffraction, photoluminescence, light yield, scintillation decay and thermoluminescence are analyzed to provide better understanding of the influence of the Y3+ admixture in LuAG on the lattice structure, electronic band structure, energy-level structure of Ce3+ centers and scintillation properties. The lattice parameter of Ce,Mg:LuYAG ceramics shows a linear growth with the increasing Y content, which is in agreement with Vegard's law. Reducing the Lu-to-Y ratio in the LuYAG matrix, the Ce3+ 5d1 energy level shifts to a lower energy, the forbidden gap becomes narrower and the electron traps become shallower. Furthermore, the increase of light yield and accelerated slow scintillation component are found with increasing Y admixture. After optimization, the light yield of Ce,Mg:Lu0.5Y2.5Al5O12 ceramics is achieved to 24,500 ph/MeV with 1 μs shaping time, which is 40% higher than the value in the Y-free Ce,Mg:LuAG ceramic sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.