Abstract

A quantum treatment on ICN photodissociation from an initial perpendicular transition (Omega'=+/-1<--Omega"=0) to the asymptote CN(|Sigma+,J'M'N'1/2>)+I(2P3/2) is presented. Density matrices of both photofragments are derived and explicit expressions of the state multipoles in terms of the angular momentum coupling coefficients and the rotation-bending factors have been obtained. To perceive the physical origin of electronic angular momentum polarizations of the iodine photofragments, a correlation scheme which considers the magnetic dipolar and the electrostatic dipole-quadrupole interactions between I and CN cofragments is proposed. For ICN precursors in the vibrational ground state or in the equally populated l-type split levels, the alignment parameters of the iodine photofragments in the molecular frame can be calculated according to this long-range interaction model. For the perpendicular transition |1Pi1><--|1Sigma0+>, its alignment parameters of I(2P3/2) from the incoherent and coherent transitions to the |Omega'=1> and |Omega'=-1> components are rho(0)2(1Pi1)=0.756 and rho2(2)(1Pi1)=-0.656, respectively. For the perpendicular transition to |3Pi1>, rho(0)2(3Pi1)=-0.878 and rho2(2)(3Pi1)=0.328 are from the incoherent transition, whereas rho(0)2(3Pi1)=0.122 and rho2(2)(3Pi1)=0.328 are from the coherent transition. To analyze the photoion images of iodine photofragments, angular distributions of I+ from the 2+1 resonance-enhanced multiphoton ionization detection scheme are derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call