Abstract

Absorption and laser-induced fluorescence spectra of copper dibromide in a solid neon matrix are reported. Similar to those for copper dichloride, electronic transitions between the low-lying so-called ligand field states states are forbidden by the u↔g rule, appear as a result of vibronic Herzberg−Teller coupling. The observed transition energies are in good agreement with the adiabatic state energies derived from a recent gas-phase photodetachment study by Wang and co-workers. The matrix study with its much higher resolution yields detailed information about the copper halide electronic states and their vibrational structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.