Abstract

The electronic and transport property of a radially deformed double-walled carbon nanotube (DWNT) intramolecular junction (IMJ) has been studied by the tight-binding (TB) model combined with the first-principle calculations. The geometrical structures of the DWNT IMJ have been first optimized in energy by the universal force field (UFF) method. It is found that when heavily squashed, the DWNT will become an insulator-coated metallic wire, and the conductance near the Fermi level has been significantly changed by the radial squash. Specially, several resonance conductance peaks appear at some energies in the conduction band of the squashed DWNT IMJ. Finally, we have also investigated the conductance variation due to change of the length of the central semiconductor in the squashed DWNT IMJ. Furthermore, a promising pure carbon nanoscale electronic device is proposed based on the DWNT IMJ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.