Abstract

To deepen the understanding the interactions of thiophenic compounds in ionic liquids, we have performed a systemic study on the electronic structures, and topological properties of interactions between N-ethyl-N-ethylimidazolium diethyl phosphate ([EEIM][DEP]) ionic liquid and 3-methylthiophene (3-MT), benzothiophene (BT), or dibenzothiophene (DBT) using density functional theory. From NBO atomic charges and electrostatic potential analyses, most of the positive charge is located on C2–H2 in the [EEIM] cation, and the negative charge is focused on oxygen atoms in [DEP] anion, implying oxygen atoms in [DEP] should easily attack C2–H2 in [EEIM]. The electrostatic interaction between anion and cation may be dominant for the formation of the [EEIM]–[DEP] ion pair. The large stabilizing effect is due to the strong orbital interactions between the antibonding orbital of proton donor σ*(C2–H2) in [EEIM] cation and the lone pairs of proton acceptor LP(O) in [DEP] anion. A common feature of [EEIM][DEP], [EEIM][DEP]-3-MT/BT/DBT complexes is the presence of hydrogen bonds between [EEIM] cation and [DEP] anion. This work has also given the interacting mechanism of 3-MT, BT, and DBT adsorption on [EEIM][DEP] ionic liquid. Both [EEIM] cation and [DEP] anion are shown to play important roles in interactions between 3-MT, BT, DBT and [EEIM][DEP], which has been corroborated by NBO and AIM analyses. The π···π, π···C–H and hydrogen bonding interactions occur between [EEIM][DEP] and 3-MT, BT, DBT. The strength of sulfur involved interactions between 3-MT, BT, DBT and [EEIM][DEP] follows the order of 3-MT > BT > DBT. The order of interaction energies between [EEIM][DEP] and 3-MT, BT, DBT is 3-MT BT > 3-MT) in terms of sulfur partition coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.