Abstract
We analytically investigate effective spin–orbit coupling (SOC) and potential energy on electronic and thermoelectric transport properties for a graphene–silicene–graphene (GSG) heterojunction with armchair-edge nanoribbons using nonequilibrium Green's function method. The calculation shows that the transmission coefficient T and the charge Seebeck coefficient SC for armchair-edge GSG junctions display the oscillatory behavior and depend sensitively on both effective SOC λSO and the potential energy V0. Compared with zigzag-edge GSG heterojunctions, armchair-edge GSG heterojunctions are found to posses superior thermoelectric performance, their charge Seebeck coefficients can be improved by one order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.