Abstract

New triphenylamine containing azomethine diimides and two kinds of poly(azomethine imide)s, i.e., linear and branched were synthesized. These compounds were prepared from two diamines, that is, N,N′-bis(4-amino-2,3,5,6-tetramethylphenyl)phtalene-1,2,4,5-dicarboximide (DAPhDI), N,N′-bis(5-aminonaphtalen)naphthalene-1,4,5,8-dicarboxyimide (DANDI-2) and 4-formyltriphenylamine, 4,4′-diformyltriphenylamine and 4,4′,4″-triformyltriphenylamine. The structures of the compounds were characterized by means of FTIR, 1H NMR spectroscopy and elemental analysis; the results show an agreement with the proposed structure. Thermal properties of prepared azomethine diimides and polymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Obtained compounds exhibited high thermal stability with 5% weight-loss temperatures above 390°C. Azomethine diimides exhibited glass-forming properties with high glass-transition temperatures 216 and 308°C. Optical properties of the prepared compounds were investigated by UV–vis and photoluminescence (PL) measurements. All compounds emitted blue light in NMP solution and in solid state as blend with PMMA. The electrochemical properties, that is, orbital energies and resulting energy gap were estimated based on cyclic voltammetry (CV). All synthesized material showed reversible reduction process, furthermore AzPhDI and AzNDI showed partially reversible oxidation process. Electrochemical band gap was found in the range 1.23–1.70eV. Low molecular weight model compounds were tested as bipolar host materials in blue phosphorescent organic light emitting diodes (OLEDs). The devices exhibited turn-on voltages of about 5.5V and maximum brightness of 40–220cd/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.