Abstract

The oxygen evolution reaction (OER) involves four electron transfer processes and is of great significance in water electrolysis. The development of efficient and robust non-precious OER electrocatalysts remains a critical challenge for the production, storage and conversion of renewable energy. Herein, vertically NiCo2O4 nanosheets are grown on Ti mesh via a facile solvothermal method which is followed by low-temperature calcination. The NiCo2O4/Ti catalyst exhibits outstanding OER performance with a low overpotential of 353 mV to drive the current density of 10 mA cm−2 and a Tafel slope of 61 mV dec−1 in alkaline solution. Moreover, the stable electrocatalyst undergoes negligible degradation in alkaline media at least 20 h. The acceleration of the electrochemical OER likely stems from the facile electron transfer promoted by the NiCo2O4/Ti interface as revealed by X-ray photoelectron spectroscopy. This work introduces a novel strategy for the establishment low-cost electrocatalysts for electrochemical water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call