Abstract

Bimetallic nitrogen (N2) splitting to form metal nitrides is an attractive method for N2 fixation. Although a growing number of pincer-supported systems can bind and split N2, the precise relationship between the ligand properties and N2 binding/splitting remains elusive. Here we report the first example of an N2-bridged rhenium(III) complex, [(trans-P2tBuPyrr)ReCl2]2(μ-η1:η1-N2) (P2tBuPyrr = [2,5-(CH2PtBu2)2C4H2N]-). In this case, N2 binding occurs at a higher oxidation level than that in other reported pincer analogues. Analysis of the electronic structure through computational studies shows that the weakly π-donor pincer ligand stabilizes an open-shell electronic configuration that leads to enhanced binding of N2 in the bridged complex. Utilizing SQUID magnetometry, we demonstrate a singlet ground state for this Re-N-N-Re complex, and we offer tentative explanations for antiferromagnetic coupling of the two local S = 1 sites. Reduction and subsequent heating of the rhenium(III)-dinitrogen complex leads to chloride loss and cleavage of the N-N bond with isolation of the terminal rhenium(V) nitride complex (P2tBuPyrr)ReNCl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call