Abstract

The adsorption of O and H atoms on the ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$(111) surface was investigated using ultraviolet photoemission spectroscopy (UPS) and first-principles calculations. On the FeA1-terminated surface, H adsorption decreases the work function without changing the density of states near the Fermi level. The density of states near the Fermi level decreases by O adsorption. On the O/FeA1-terminated surface, H adsorption dramatically increases the density of states near the Fermi level, indicating that the Fe $3d$ state is modified. The first-principles calculations showed that the electronic structure of the surface FeA on the FeA1-terminated surface is half metallic with its spin up forming an isolated spin-polarized conductive layer. By O adsorption, the up-spin band at the Fermi level of the surface FeA site is removed, and the Fermi level of the surface FeA moves to the down-spin ${t}_{2g}$ band. By subsequent H adsorption, electrons are doped to the FeA1 site, and the surface FeA1 layer becomes semiconducting. These results indicate that the charge and spin structure is modulated by O and H adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call