Abstract

We report high-resolution scanning transmission electron microscopy images displaying a range of inclusions of isolated silicon atoms at the edges and inner zones of graphene layers. Whereas the incorporation of Si atoms to a graphene armchair edge involves no reconstruction of the neighboring carbon atoms, the inclusion of a Si atom to a zigzag graphene edge entails the formation of five-membered carbon rings. In all the observed atomic edge terminations, a Si atom is found bridging two C atoms in a 2-fold coordinated configuration. The atomic-scale observations are underpinned by first-principles calculations of the electronic and quantum transport properties of the structural anomalies. Experimental estimations of Si-doped graphene band gaps realized by means of transport measurements may be affected by a low doping rate of 2-fold coordinated Si atoms at the graphene edges, and 4-fold coordinated at inner zones due to the apparition of mobility gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.