Abstract

Constructing a novel van der Waals (vdW) heterostructure by integrating diverse two-dimensional (2D) materials is significant to generate the more fascinating performances. In this present contribution, the electronic and photocatalytic properties of ZnO/GaTe heterostructure have been explored using first-principles calculations. The results reveal that the interaction between layers is dominated by the vdW forces. It displays an intrinsic type-II band alignment and a direct band gap of 1.730 eV under hybrid HSE06 functional. The valence band top and conduction band bottom are located at ZnO and GaTe layers, respectively, which guarantees the spatial separation of photogenerated electron-hole pairs and improves the photocatalytic efficiency. Moreover, the band edges all span the energy levels of both the reduction and oxidation potentials of H2O, indicating that its better photocatalytic performance. The modulated photocatalytic properties under varied pH circumstances imply that an acid environment is more favorable to the water splitting process. Furthermore, the band edge alignment exhibits the significant adjustability through varying vertical and in-plane biaxial strains. These theoretical findings indicate that the ZnO/GaTe heterostructure can offer an alternative strategy to design the efficient photocatalysts for water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.