Abstract

Theoretically, the density functional calculations have been effectuated for investigating electronic and optical properties of zinc oxide nanosheet doped and codoped with Be and/or Mg utilizing the generalized gradient approximation modified Becke–Johnson (GGA-mBJ) approach. The computed results show that the ZnBeO, ZnMgO and ZnBeMgO in nanosheet structure, referring to their low formation energy values, are more stable than those in bulk one. Furthermore, the bandgap of ZnO monolayer can be effectively modulated through substitution of Zn atoms by Be and/or Mg. In addition to that, by incorporating Be and/or Mg, the absorption peaks of ZnO nanosheet shift into the shorter UV-wavelength side as well as its reflectivity becomes lower. These results indicate that doping and codoping process of ZnO monolayer with Be and/or Mg are two efficient ways to modulate electronic and optical properties for ultraviolet optoelectronic technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.