Abstract

Using the first principle based on the density-functional theory, we have studied the electronic structures and optical properties of zigzag graphene nanoribbon with different Stone-Wales defects. We take two kinds of models, namely that with and without spin polarization, into consideration. The results suggest that graphene nanoribbon with symmetrical Stone-Wales defect has the concavo-convex geometry structure in the defective region without considering spin polarization, both kinds of Stone-Wales defects give rise to the charge redistribution. The spin density of graphene nanoribbon with Stone-Wales defects is obviously affected by considering spin polarization, which leads to the changes of density of states for different kinds of spin. We have further investigated the optical properties of the graphenen nanoribbons; it was found that the peaks of absorption and reflectance have significent changes in the graphene nanoribbon with the presence of Stone-Wales defects, and red shift is observed when compared with the perfect graphene nanoribbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call