Abstract

In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.