Abstract

One of the most effective option of photocatalysts for water splitting is doped strontium titanate, SrTiO3. It has a high rate of photo-generated charge transfer and limited photocatalytic activity for water splitting. The search of an appropriate photocatalyst having a high visible light absorption as well as fast charge transportation is extremely needed, however it is a difficult task. The structural, electronic and optical properties of sulfur-doped SrTiO3 and nitrogen-doped SrTiO3 are investigated using calculations based on density functional theory (DFT). According to the band structure calculations, the O-2p states represented the higher levels of the valence band of pure SrTiO3. When S and N atoms are introduced into the SrTiO3 structure on the O site, electronic structure findings indicate that doping the Sulfur (S) atoms reduced the band gap significantly, whereas doping of N atoms increased the bandgap of SrTiO3. According to our results, the N-doped SrTiO3 has a sufficient band gap of 2.03 eV, as well as suitable high visible light absorption and charge carrier transportation. The optical properties showed that N-doped SrTiO3 has good photosensitivity for visible light. In addition, we have found a significant impurity state that differs from O 2p-states, which can increase photocatalytic efficiency. The results of studies of electronic band structure showed that electron-hole transportation was well consistent with the experimental data. Thus, the N-doped SrTiO3 in this study is indeed an attractive candidate for hydrogen evolution throughout the visible light range, providing a logical base for the establishment of innovative photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call