Abstract

Heterostructures based on two-dimensional (2D) materials with tunable electronic and optical properties provide new chances for electronic and optoelectronic devices. Here we perform a comprehensive study on the electronic and optical properties of small-lattice-mismatched InN-MTe2 (M = Mo, W) heterobilayers by first-principles based on density functional theory (DFT) with van der Waals corrections. The results demonstrate that the most stable stacking models of InN–MoTe2 and InN–WTe2 heterostructures are the same. Additionally, the band structures of InN-MTe2 heterostructures are systematically explored with the consideration of spin-orbit coupling (SOC) effect. Analysis of the dielectric function and absorption coefficient of InN–MoTe2/WTe2 heterostructures show the enhanced response to UV and visible light compared to their individual InN, MoTe2, and WTe2 monolayers. In particular, electronic characteristics and structural stability can be modulated by changing the direction and intensity of an external electric field. The application of biaxial strain to InN–MoTe2/WTe2 not only able to tune the band gaps, but also change the light absorption performance. These findings provide new prospects for optoelectronic devices based on InN-MTe2 heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.