Abstract

AbstractIn this study, we substitute facial Alq3 with (‐Mg) in positions 7 and 5 as electron donating group (EDG) and (‐Cl), (‐P) and (‐S) in position 7 as electron withdrawing groups (EWD). The ground and the first excited states geometries of facial Alq3 and their derivatives are optimized using B3lyp/6‐31G (d) methods. To analyse the electric transitions in these materials, the frontier molecular orbitals (FMOs) are calculated. It was found that the highest occupied molecular orbital (HOMO) is mainly situated on the phenoxide ring, while the lowest unoccupied molecular orbital (LUMO) is situated on the pyridyl ring, the atom C9 of phenoxide or in EWD atom. The dipole moment is calculated and analysed. The absorption and emission spectra are calculated with the TD‐DFT/6‐31G (d) method. It is seen that the electron donating or electron withdrawing groups in 7 positions caused a red‐shift in the absorption and emission spectra; what means that these substitutes have a significant effect on fac‐Alq3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.