Abstract
The high aspect ratio of carbon nanotubes makes them prone to bending. To know how bending affects the tubes is therefore crucial for tube identification and for electrical component design. Very few studies, however, have investigated tubes under small bending well below the buckling limit, because of technical problems due to broken translational symmetry. In this Letter a cost-effective and exact modeling of singe-walled nanotubes under such small bending is enabled by revised periodic boundary conditions, combined with density-functional tight-binding. The resulting, bending-induced changes in electronic and optical properties fall in clear chirality-dependent trend families. While the correct trends require full structural relaxation, they can be understood by one general argument. To know these trends fills a fundamental gap in our understanding of the properties of carbon nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.