Abstract

We investigate the wave packet dynamics of H2+ in a strong (≥1014W/cm2) femtosecond pulse by solving the time-dependent Schrödinger equation for a 3D model Hamiltonian (molecular orientation is fixed). As the 3D packet moves towards larger internuclear distances, the response to the laser electric field switches from the adiabatic one to the diabatic one. Electron density transfers from a well associated with a nucleus to the other well every half optical cycle, following which the interwell transition is suppressed. As a result, the electron is distributed asymmetrically. In the adiabatic region, the correlation between the electronic and nuclear motions slows down the dissociative motion and it is clearly observed in periodic interwell transitions within a half cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call