Abstract

As more research findings have shown the correlation between ordering in organic semiconductor thin films and device performance, it is becoming more essential to exercise control of the ordering through structural tuning. Many recent studies have focused on the influence of side chain engineering on polymer packing orientation in thin films. However, the impact of the size and conformation of aromatic surfaces on thin film ordering has not been investigated in great detail. Here we introduce a disk-shaped polycyclic aromatic hydrocarbon building block with a large π surface, namely, thienoazacoronenes (TACs), as a donor monomer for conjugated polymers. A series of medium bandgap conjugated polymers have been synthesized by copolymerizing TAC with electron donating monomers of varying size. The incorporation of the TAC unit in such semiconducting polymers allows a systematic investigation, both experimentally and theoretically, of the relationships between polymer conformation, electronic structure, thin film morphology, and charge transport properties. Field effect transistors based on these polymers have shown good hole mobilities and photoresponses, proving that TAC is a promising building block for high performance optoelectronic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.