Abstract

One-way or unidirectional coupling is a striking example of how topological considerations--the parity of an array of multistable elements combined with periodic boundary conditions--can qualitatively influence dynamics. Here we introduce a simple electronic model of one-way coupling in one and two dimensions and experimentally compare it to an improved mechanical model and an ideal mathematical model. In two dimensions, computation and experiment reveal richer one-way coupling phenomenology: in media where two-way coupling would dissipate all excitations, one-way coupling enables solitonlike waves to propagate in different directions with different speeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.