Abstract

The electronic and magnetic structure of the chain silicate hedenbergite (CaFe2+Si2O6) has been investigated by a number of experimental methods (neutron diffraction, Mossbauer spectroscopy, low temperature magnetic measurements), as well as by electronic structure calculations for clusters of different size in the local spin density approximation. The calculated size-converged spectroscopic data (d-d excitation energies, hyperfine parameters) are in quantitative agreement with the respective experimental values. The calculated magnetic coupling constants are about +25 cm−1 and −4 cm−1 for intra-chain and inter-chain coupling, respectively. The latter value shows that weak superexchange via edges of silicon tetrahedra is well reproduced by the calculations, and it is in qualitative agreement with an observed metamagnetic transition at 4.2 K in an external magnetic field with an onset around 4 T but saturation is not achieved in fields up to 14.5 T. The large ferromagnetic intra-chain coupling is attributed to a nearly degenerate ground state. The ratio between the two magnetic coupling constants agrees with earlier estimates on similar compounds. Finally, it is demonstrated how the detailed discussion of the various exchange pathways contributes to an improved understanding of the connection between magnetic properties and the geometrical structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.