Abstract

In this article, using first-principles electronic structure calculations within the spin density functional theory, alternated magnetic and non-magnetic layers of rutile-CrO2 and rutile-SnO2 respectively, in a (CrO2)n(SnO2)n superlattice (SL) configuration, with n being the number of monolayers which are considered equal to 1, 2, ..., 10 are studied. A half-metallic behavior is observed for the (CrO2)n(SnO2)n SLs for all values of n. The ground state is found to be FM with a magnetic moment of 2 μB per chromium atom, and this result does not depend on the number of monolayers n. As the FM rutile-CrO2 is unstable at ambient temperature, and known to be stabilized when on top of SnO2, the authors suggest that (CrO2)n(SnO2)n SLs may be applied to spintronic technologies since they provide efficient spin-polarized carriers.

Highlights

  • A variety of heterostructures have been studied for spintronics applications, and they have proved to have a great potential for high-performance spin-based electronics [1]

  • One attempt has already been made by Zaoui et al [2], through ab initio electronic structure calculations for the one monolayer (ZnO)1(CuO)1 SL, with the aim of obtaining a half-metallic behavior material, since they are 100% spin polarized at the Fermi level and appear ideal for a well-defined carrier spin injection

  • The total magnetic moment gives a value of 2 μB per chromium atom

Read more

Summary

Introduction

A variety of heterostructures have been studied for spintronics applications, and they have proved to have a great potential for high-performance spin-based electronics [1]. The magnetic and electronic properties of (CrO2)n(SnO2)n SLs with n = 1, 2, ..., 10 being the number of monolayers are investigated These systems are good candidates to obtain a half-metallic behavior material since bulk rutile-CrO2 has shown experimentally this behavior [3] and recently magnetic tunnel junctions based on CrO2/SnO2 epitaxial layers have been obtained [4]. For simulation of the one monolayer (CrO2)1(SnO2) SL, a supercell with 12 atoms (2Sn, 2Cr, and 8O) in the rutile structure as shown in Figure 1a was used. For this case, a 4 × 4 × 3 mesh of Monkhorst-Pack k-points was used for integration in the SL BZ. All the calculations were done with a 490 eV energy cutoff in the plane-wave expansions

Results and discussion
Conclusions
Wycokoff R
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.