Abstract

We present a systematic study of the structure, electronic, and magnetic properties of a new branch of intermetalllic compounds, $R$V$_6$Sn$_6$ ($R$ = Tb - Tm) by using X-ray diffraction, magnetic susceptibility, magnetization, electrical transport, and heat-capacity measurements. These compounds feature a combination of a non-magnetic vanadium kagome sublattice and a magnetic rare-earth triangular sublattice that supports various spin anisotropies based on different $R$ ions. We find magnetic orders for the $R$ = Tb, Dy, and Ho compounds at 4.4, 3, 2.5 K, respectively, while no ordering is detected down to 0.4 K for the $R$ = Er and Tm compounds with easy-plane anisotropies. Electronically, we found no superconductivity or charge ordering transition down to 0.4 K for any member of this family, while all compounds exhibit multi-band transport properties that originate from the band topology of the vanadium kagome sublattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.