Abstract

In this paper, electronic and magnetic properties of monolayers and bilayers of Vanadium-based transition metal dichalcogenides VX2 (X = S, Se, Te) in the H phase are investigated theoretically using methods based on DFT calculations as well as analytical methods based on effective spin Hamiltonians. The band structure has been computed for all systems, and then the results have been used to determine exchange parameters and magnetic anisotropy constants. These parameters are subsequently used for the determination of the Curie temperatures, hysteresis curves, and energy of spin-wave excitations. In the latter case, we compare analytical results based on effective spin Hamiltonian with those determined numerically by Quantum ATK software and find a good agreement. The determined Curie temperature for VTe2 monolayers and bilayers is below the room temperature (especially that for bilayers), while for the other two materials, i.e. for VS2 and VSe2, it is above the room temperature, in agreement with available experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call