Abstract

ABSTRACTMagnetic nanophases nucleated within horse spleen apoferritin nanotemplates underin vivophysiological conditions andin vitroreconstitution were characterized by Mössbauer spectroscopy in lyophilized form. Mössbauer spectra recorded at 80 K indicate that for thein vivoproduced ferritin the presence of phosphates within the ferritin biomineral core results in larger quadrupole splittings, both at interior and surface sites, 0.62 mm/s and 1.06 mm/s, respectively, as compared to 0.56 mm/s and 0.75 mm/s for the reconstituted ferritin. Data collected at lower temperatures give blocking temperatures of 55 and 40 K forin vitroandin vivosamples. At 4.2 K, both samples give similar saturation hyperfine field values for the interior (495 kOe) and surface (450 kOe) iron sites. The temperature dependence of the reduced hyperfine magnetic fields at the interior iron sites is consistent with the collective magnetic excitations model, due to the particle's magnetization precession about the anisotropy axis. In contrast, a marked decrease in the reduced hyperfine field at surface sites with increasing temperature indicates a more complex spin excitation energy landscape at the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.