Abstract
We report theoretical results on the magnetic behavior of free standing nanowires of Ti. Four different structures of Ti nanowires-linear, ladder, dimerized, and zigzag-with nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations were considered. Exploration of magnetism in these atomic chains leads to ferromagnetic behavior for all the structures: zigzag structure shows almost degenerate ferromagnetic and anti-ferromagnetic states though. The zigzag structure of Ti nanowires is favored of all for low values of nearest neighbor distances, whereas the dimerized structure is favored at larger atomic separations. Our work helps to resolve the controversy in the predicted ground state magnetic nature of zigzag chains of Ti as reported in recent previous works. The maximum value of magnetic moment (0.93 μ B/atom) occurs in the ladder chains while the zigzag chains show the minimum value (0.17 μ B/atom). Interestingly, all the structures in the magnetic configuration show metastable state except the dimerized structure. Ferromagnetic dimerized nanowires seem to be a potential candidate for use in spintronics. The projected density of states shows that d x 2 − y 2 and d xy bands play a leading role in magnetism of linear and ladder structures, whereas there is no outstanding contribution from a particular d-orbital for zigzag and dimerized nanowires. The charge density plots suggest that linear and zigzag structures have metallic bonding whereas covalent bonding is predominant in the dimerized and ladder structures. The estimated diameters for the favored ferromagnetic configuration of these ultrathin nanowires lie in the range 1.9–3.4 Å and indicate the instability of the ladder structure, as also projected by the relative cohesive energy and relative break force values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.