Abstract

The effect of annelation and carbonylation on the electronic and ligating properties of N-heterocyclic carbenes (NHCs) has been studied quantum chemically. The thermodynamic and kinetic stability of these NHCs have been assessed on the basis of their singlet-triplet and HOMO-LUMO gaps respectively. Both annelation and carbonylation have been found to decrease the stability of NHCs. Compared to nonannelated carbenes, annelated and carbonylated carbenes are found to be weaker σ donors but better π acceptors. However, the effect of carbonylation is more pronounced than annelation toward increasing the π acidity of the NHCs. The reactivity of these carbenes has been discussed in terms of nucleophilicity and electrophilicity indices. The calculated values of the relative redox potential and (31)P NMR chemical shifts of corresponding carbene-phosphinidene adducts have been found to correlate well with the π acidity of the NHCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.