Abstract

For carbon tetrachloride, a temperature Hugoniot at 7–23 GPa and a distribution of the constant-volume specific heat on the Hugoniot CV(T) at 1057–3275 K are simultaneously estimated from the Walsh–Christian (WC) equation such that the Hugoniot fits well to the existing measured data. The estimated CV(T) distribution reveals the significance of the contribution of electrons and ions to the specific heat. That is, in contrast to the almost uniform distribution of the specific heat predicted from the Debye equation, the CV(T) distribution increases significantly with an increase in the Hugoniot temperature due to thermal excitation of electrons at 1057–1500 K (7–10.1 GPa), additional activation of the dimerization reaction at 1500–2350 K (10.1–16 GPa), and also additional activation of the polymerization reaction at 2350–3275 K (16–23 GPa). As an example, evidence is presented that carbon tetrachloride is a semiconductor at 1500 K. The CV(T) distribution in each temperature range is formulated and a temperature Hugoniot is reevaluated from the WC equation using the specific heat equations formulated. It is confirmed by a good fit of the reevaluated Hugoniot to the existing measured data that the specific heat equations express the CV(T) distribution appropriately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.