Abstract

The A 1A′←X 1A1 electronic transition of the propargyl cation H2C3H+ with the origin band at 267.8(2) nm has been identified in a neon matrix at 5 K. The frequencies of the two modes excited in the upper state are 667(50) and 1629(50) cm−1 and imply a reduction of symmetry from C2v in the ground state to Cs in the excited state. The most intense IR mode of the propargyl cation is observed at 2079.9(1.0) cm−1 and for the cyclopropenyl cation at 3130.4(1.0) cm−1. Ab initio calculations on the excited states of the two isomer cations support the assignment and explain why the electronic transition could not be observed for the cyclic species; it lies below 200 nm. The A 2A″←X 2B1 and B 2A′←X 2B1 absorptions of the neutral propargyl radical have also been observed with origin bands at 351.9(2) and 343.0(2) nm, respectively. These results provide the basis for the study of these astrophysically interesting C3H3+ species in the gas phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.