Abstract

We use a theoretical ensemble Monte Carlo method to study the response of carriers photoexcited by a 1.55-eV laser pulse to applied electric fields (less than 5 kV/cm) for excited carrier densities between 1017 cm−3 and 1018 cm−3. It is found that the electron-hole interaction reduces the fraction of electrons that transfer to the upper valleys and reduces the velocity of the electrons. These effects are more significant at low electric fields and higher excitation levels. The energy of the holes rises initially due to the energy transfer from the hot electrons through the electron-hole interaction. This is also reflected in a higher velocity for the holes during the first picosecond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.