Abstract

AbstractAsymmetrically coordinated single‐atom catalysts are attractive for the implementation of high‐performance lithium–sulfur (Li─S) batteries. However, the design principle of the asymmetric coordination that can efficiently promote bidirectional conversion of polysulfides has not been fully realized. Herein, a series of Co─N3X1 (X refers to F, O, Cl, S, or P) configurations are established, and theoretically unravel that the relative electronegativity value (REV) can be used as an index parameter for characterizing the catalytic activity. By virtue of enhanced chemical affinity with sulfur species and lowered Li2S decomposition, chlorine‐atom‐constructed asymmetric configurations with an optimal REV exhibit stronger catalytic effect to inhibit shuttling. Such a REV‐related catalytic effect is termed as REV effect. Following this principle, a novel single‐atom catalyst with dominated Co─N3Cl1 configuration is successfully synthesized through an inside‐out thermal reaction strategy and used as a modified layer on the cathode‐side separator. Interestingly, the assembled Li─S batteries exhibit quite high rate capacity (804.3 mAh g−1 at 5.0 C), durable cyclability (0.023% capacity decay per cycle), and competitive areal capacity (7.0 mAh cm−2 under 7.5 mg cm−2 sulfur loading and lean electrolyte). The guideline provided in this work gives impetus to the pursuit of highly efficient single‐atom catalysts for practical Li─S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.