Abstract
The electrons are an essential particle species in the solar wind. They often exhibit non-equilibrium features in their velocity distribution function. These include temperature anisotropies, tails (kurtosis), and reflectional asymmetries (skewness), which contribute a significant heat flux to the solar wind. If these non-equilibrium features are sufficiently strong, they drive kinetic micro-instabilities. We develop a semi-graphical framework based on the equations of quasi-linear theory to describe electron-driven instabilities in the solar wind. We apply our framework to resonant instabilities driven by temperature anisotropies. These include the electron whistler anisotropy instability and the propagating electron firehose instability. We then describe resonant instabilities driven by reflectional asymmetries in the electron distribution function. These include the electron/ion-acoustic, kinetic Alfvén heat-flux, Langmuir, electron-beam, electron/ion-cyclotron, electron/electron-acoustic, whistler heat-flux, oblique fast-magnetosonic/whistler, lower-hybrid fan, and electron-deficit whistler instability. We briefly comment on non-resonant instabilities driven by electron temperature anisotropies such as the mirror-mode and the non-propagating firehose instability. We conclude our review with a list of open research topics in the field of electron-driven instabilities in the solar wind.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.