Abstract

We reason that in the free-electron radiation if the transition rate τ is less than the radiation frequency ν, the radiation is of broad-band spectrum whereas if τ ≫ ν, the radiation is of monochromatic. We find that when a weaker magnetic wiggler (MW) is superpositioned on a predominantly strong uniform magnetic field, free-electron two-quantum magnetic-wiggler (FETQMW) radiation takes place. In FETQMW radiation, the MW and the electron’s intrinsic motivity to change its internal configuration through radiation play as two first-order perturbers while the uniform magnetic field acts as the sole zeroth-order perturber. When ΔE≪ hν, where ΔE is the uncertainty in the electron energy produced by transverse wiggling due to the MW in conjuction with a Heisenberg’s uncertainty principle ΔEΔx ~ h and E = (m 2 c 4 + c 2 p 2)1/2, the power of FETQMW radiation cannot exceed hν 2. However, we find that this power cap is lifted by the amount of νΔE when ΔE ≫ hν holds [1,2]. This lift-up of the saturated radiation power is the responsible mechanism for the effective external injection of a 20 kW maser in an electron-cyclotron maser (ECM). We find that an MW-added ECM with radius 5 cm and length 1 m and operating parameters of the present beam technology can yield laser power of 50 MW at the radiation wavelength of 0.001 cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.