Abstract

The interface between the hole transport layer (HTL) and emissive layer (EML) in polymer light-emitting diodes (PLEDs) has attracted intense research attentioin since the initial discovery of PLEDs in 1989. In this contribution, we analyze the electron-blocking properties of various HTL at this interface and their effect on PLED device performance. We find that poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) - a conventional PLED HTL - does not possess optimum electron-blocking properties and that PLED device performance can be significantly enhanced by inserting a new type of electron-blocking layer (EBL) between the PEDOT-PSS HTL and EML. The new EBLs developed in this study consist of two major components: a siloxane-derivatized, crosslinkable, TPD-like triarylamine hole-transporting material, such as 4,4’-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi<sub>2</sub>), and a hole-transporting polymer, such as poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl) diphenylamine) (TFB). TPDSi<sub>2</sub> undergoes crosslinking in air and rendering the TPDSi<sub>2</sub> + TFB blend insoluble. With the TPDSi<sub>2</sub> + TFB EBL inserted between PEDOT-PSS and BT layers, PLED device current density is reduced, device light output and current efficiency are dramatically increased (maximum current efficiency ~ 17 cd/A). Our result shows: 1) insufficient electron-blocking by PEDOT-PSS is another reason for the poor performance of PEDOT-PSS/BT based devices; 2) PLED device performance can be dramatically enhanced with a triarylamine siloxane-based EBLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.