Abstract

Electrons carrying orbital angular momentum (OAM) have recently been discovered theoretically and obtained experimentally that opens up possibilities for using them in high-energy physics. We consider such a twisted electron moving in external field of a plane electromagnetic wave and study how this field influences the electron's OAM. Being motivated by the development of high-power lasers, we focus our attention on a classically strong field regime for which $-e^2 \bar {A^2}/m_e^2 c^4 \gtrsim 1$. It is shown that along with the well-known "plane-wave" Volkov solution, Dirac equation also has the "non-plane-wave" solutions, which possess OAM and a spin-orbit coupling, and generalize the free-electron's Bessel states. Motion of the electron with OAM in a circularly polarized laser wave reveals a twofold character: the wave-packet center moves along a classical helical trajectory with some quantum transverse broadening (due to OAM) existing even for a free electron. Using the twisted states, we calculate the electron's total angular momentum and predict its shift in the strong-field regime that is analogous to the well-known shifts of the electron's momentum and mass (and to a less known shift of its spin) in intense fields. Since the electron's effective angular momentum is conserved in a plane wave, as well as in some more general field configurations, we discuss several possibilities for accelerating non-relativistic twisted electrons by using the focused and combined electromagnetic fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call