Abstract

We evaluate the joint distributions of electron waiting times in coherent conductors described by scattering theory. Successive electron waiting times in a single-channel conductor are found to be correlated due to the fermionic statistics encoded in the many-body state. Our formalism allows us also to investigate the waiting times between charge transfer events in different outgoing channels. As an application we consider a quantum point contact in a chiral setup with one or both input channels biased by either a static or a time-dependent periodic voltage described by Floquet theory. The theoretical framework developed here can be applied to a variety of scattering problems and can in a straightforward manner be extended to joint distributions of several electron waiting times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call