Abstract

In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor ν = 5/2. At this filling factor a pressure-induced quantum phase transition was observed from the paired fractional quantum Hall state to the quantum Hall nematic. Here we show that the pressure-induced paired-to-nematic transition also develops at ν = 7/2, demonstrating therefore this transition in both spin branches of the second orbital Landau level. However, we find that pressure is not the only parameter controlling this transition. Indeed, ground states consistent with those observed under pressure also develop in a sample measured at ambient pressure, but in which the electron–electron interaction was tuned close to its value at the quantum critical point. Our experiments suggest that electron–electron interactions play a critical role in driving the paired-to-nematic transition.

Highlights

  • In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood

  • We show that ground states consistent with those at high pressures develop in a sample at ambient pressure, but in which the electron–electron interaction is engineered to be close to its critical value

  • In our earlier work we argued that the simplest explanation for the sequence of the phases and of the stability diagram at ν = 5/2 is the existence of two quantum phase transitions in the limit of T = 0: one from a paired fractional quantum Hall states (FQHSs) to the nematic occurring at Pc, and another from the nematic to an isotropic Fermi fluid at P~c29,35

Read more

Summary

Introduction

In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. At a given orbital quantum number, the ordered ground state at half-filled Landau level is either the nematic or the FQHS, but a transition between them did not seem possible in the absence of a symmetry breaking field favoring the nematic.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.