Abstract
Electrons can tunnel between cofactor molecules positioned along biological electron transport chains up to a distance of ≃ 20 Å on the millisecond time scale of enzymatic turnover. This tunneling range determines the design of biological energy chains facilitating the cross-membrane transport of electrons. Tunneling distance and cofactors' redox potentials become the main physical parameters affecting the rate of electron transport. In addition, universal charge-transport properties are assigned to all proteins, making protein identity, flexibility, and dynamics insignificant. This paradigm is challenged by dynamical models of electron transfer, showing that the electron hopping rate is constant within the crossover distance R* ≃ 12 Å, followed with an exponential falloff at longer distances. If this hypothesis is fully confirmed, natural and man-made energy chains for electron transport should be best designed by placing redox cofactors near the crossover distance R*. Protein flexibility and dynamics affect the magnitude of the maximum hopping rate within the crossover distance. Changes in protein flexibility between forward and backward transitions contribute to vectorial charge transport. For biological energy chains, charge transport through proteins is not defined by universal parameters, and protein identity matters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.