Abstract

Two-dimensional (2D) lead halide perovskite nanoplatelets (NPLs) are promising materials for blue light emission because of the strong quantum confinement in the 2D morphology. However, the identity of carrier traps and the trap influence on charge transfer in these NPLs remain unclear. Herein, transient absorption studies revealed two types of electron traps in 3 monolayer lead bromide perovskite NPLs with trapping lifetime of 9.0 ± 0.6 and 516 ± 59 ps, respectively, while no hole traps were observed. Systematic charge transfer experiments show that electron traps have negligible influence on ultrafast electron transfer or hole transfer but extend the half-lifetime of the charge-separated state from 2.1 ± 0.1 to 68 ± 3 ns after hole transfer, which is explained by the reduced electron-hole overlap. This work contributes to the understanding of the fundamental carrier dynamics in 2D perovskite NPLs and offers guidelines for boosting their performance in optoelectronics and photocatalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.