Abstract

Efficient cathode interfacial layers (CILs) have become a crucial component of organic solar cells (OSCs). Charge extraction barriers, interfacial trap states, and significant transport resistance may be induced due to the unfavorable cathode interlayer, limiting the device performance. In this study, poly(4-vinylpyridine) is used as the CIL for OSCs, and a new type of CIL named P4VP-I is synthesized through the quaternization strategy. Compared to P4VP, P4VP-I CIL exhibits enhanced conductivity and optimized work function. OSCs employing the P4VP-I ETL demonstrate prolonged carrier lifetime, suppressed charge recombination, and achieve higher power conversion efficiencies (PCE) than the commonly used ETLs such as PFN-Br and Phen-NaDPO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.