Abstract
The electron transport mechanisms through nanocomposite SiO2(Si) films containing Si nanoclusters into dielectric SiO2 matrix have been investigated. SiO2(Si) films were obtained by oxide assisted growth. At the first stage the SiOx films with different content of excess Si were deposited by LP CVD method. Second stage includes high temperature (T=1100 C) annealing of SiOx films that promotes formation of Si nanocrystals. Current transport through SiO2(Si) films were studied in temperature range 100-350 K. As it was observed the dominant mechanism of electron transport depends as on voltage and temperature. The Mott’s conductivity caused by traps near Fermi level was revealed in low-voltage range for all temperatures. At increasing the voltage the SCLC conductivity is observed for films with higher content of excess silicon while in case low content of Si the Pool-Frenkel mechanism dominates. The further increase in voltage results in a double carrier injection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.