Abstract

Understanding electron transport through a single molecule bridging between metal electrodes is a central issue in the field of molecular electronics. This review covers the fabrication and electron-transport properties of single π-conjugated molecule junctions, which include benzene, fullerene, and π-stacked molecules. The metal/molecule interface plays a decisive role in determining the stability and conductivity of single-molecule junctions. The effect of the metal-molecule contact on the conductance of the single π-conjugated molecule junction is reviewed. The characterization of the single benzene molecule junction is also discussed using inelastic electron tunneling spectroscopy and shot noise. Finally, electron transport through the π-stacked system using π-stacked aromatic molecules enclosed within self-assembled coordination cages is reviewed. The electron transport in the π-stacked systems is found to be efficient at the single-molecule level, thus providing insight into the design of conductive materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.