Abstract
Electrical properties of self-assembled quantum dots have been the subject of intensive research due to quantum confinement. Here the authors report on the fabrication of Ge quantum dots (QDs) onto Si (100) by ultrahigh-vacuum ion beam sputtering and the electrical properties of individual QDs. Transmission electron microscopy images show that samples with completely incoherent or coherent semispherical islands can be produced under different ion energies. The current-voltage (I-V) characteristics with conductive atomic force microscopy at room temperature. exhibit linear behavior at low bias and nonlinear behavior at large bias from coherent islands, whereas the staircase structures are clearly observed in the I-V curve from incoherent islands, which are attributed to electron tunneling through the quantized energy levels of a single Ge QD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.