Abstract

In this study, electron transport mechanisms at a direct current in SiO2(Si)&FexOy(Fe) granular composite films containing Si and Fe nanoinclusions in the temperature range of 95–340 K were determined. The composite films were obtained by co-sputtering of Si and Fe targets in oxygen containing atmosphere (Ar+O2) followed by temperature annealing. It was found out that hopping conductivity with a variable-range hopping was realized at low electric fields. In the temperature range of 115<T<180 K, the electron transport could be reasonably described by the Efros-Shklovsky model taking into account the Coulomb interaction. At higher temperatures (180<T<340 K), the Mott model have been shown to be applicable. Using this model, a number of the characteristics of traps and transport process, namely the density of electron traps near the Fermi level, the activation energy of hopping, and the hopping length were determined. In the range of intermediate and high electric fields, the field enhanced thermal activation of electrons in the conduction band (Poole-Frenkel mechanism) was concluded. At this, the temperature independent current was obtained at the highest values of the electric field. This effect was explained by the influence of the energy position of electron traps taking part in the conductivity as well as the temperature dependence of a dielectric constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call